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Post-translational modification of histones, a major protein component of eukaryotic
chromosomes, contributes to the epigenetic regulation of gene expression. Distinct
patterns of histone modification are observed at specific chromosomal regions and
affect various reactions on chromosomes (transcription, replication, repair, and recom-
bination). Histone modification has long been proposed to have a profound effect on
eukaryotic geneexpression since itsdiscovery in1964.Verificationof this idea, however,
was difficult until the identification of enzymes responsible for histone modifications.
Ten years ago (1995), histone acetyltransferases (HATs), which acetylate lysine resi-
dues in histone amino-terminal tail regions, were isolated. HATs are involved in the
regulation of both promoter-specific transcription and long-range/chromosome-wide
transcription. Analyses ofHATs and othermodification enzymes have revealedmechan-
isms of epigenetic regulation that are mediated by post-translational modifications of
histones. Here we review some major advances in the field, with emphasis on the lysine
specificity of the acetylation reaction and on the regulation of gene expression over
broad regions.

Key words: allocation, chromatin, chromosome border, epigenetic regulation,
histone, histone acetyltransferases (HATs), histone code, lysine specificity,
nucleosome, two-step classification.

1. Introduction: Before 1995
The nucleosome, a fundamental unit of eukaryotic

chromosomes, is composed of DNA and histone proteins
(Fig. 1) (1, 2). Histones have a mass roughly equal to
that of the DNA which they are associated with. Each of
the core histones (H2A, H2B, H3, and H4) exhibits a simi-
lar structural feature called the ‘‘histone fold,’’ which con-
sists of a long central a-helix flanked by shorter helices and
loops that interact with DNA (3). All the core histones have
15–30 unstructured residues at their amino termini, which
are commonly referred to as ‘‘tails’’; their carboxy termini
consist of similarly unstructured tails.

The tail regions of core histones are subject to various
post-translational modifications that are considered to be
key reactions in the modulation of chromatin structure
and function (Fig. 1A). Post-translational modifications
of histones include the acetylation of lysine residues,
lysine and arginine methylation, serine and threonine
phosphorylation, lysine ubiquitination, lysine sumoyla-
tion, and the poly-ADP-ribosylation of glutamic acid
(4, 5). Among these, acetylation has been the primary
subject of research.

Histone acetylation was first discovered by Allfrey et al.
in 1964 and proposed to regulate gene expression (6).
This idea was supported by the observation that hyper-
acetylation of histones correlates with transcriptional
activation (7). Because acetylation of lysine residues neu-
tralizes their positive charges, it was assumed that a
decrease in the electrostatic interaction between DNA
and histones is the major acetylation-dependent mechan-
ism that regulates gene expression.

Turner et al. observed acetylation of distinct lysine
residues in specific chromosomal regions in Drosophila
melanogaster polytene nuclei (Fig. 1B) (8). Lysine 5 of his-
tone H4 (H4-K5) or H4-K8 is frequently acetylated in
euchromatic regions, where transcription is potentially
active. In contrast, acetylation of H4-K12 is increased in
heterochromatic regions, where transcription is potentially
inactive. Acetylation of H4-K16 is found along the tran-
scriptionally hyperactive male X chromosome (8). These
observations suggested that residue-specific acetylation,
rather than bulk neutralization of electrostatic charge,
is important in regulation of gene expression through his-
tone modification. They further suggested that histone
modification mediates not only promoter-specific gene
expression but also longer-range (and even chromosome-
wide) gene expression.

Although assumed for more than 30 years, the cause-
and-effect relationship between histone acetylation
and transcriptional activity was not confirmed, mainly
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because the enzymes responsible for histone acetylation
were unknown. Therefore the identification of such
enzymes was a major objective in the field of eukaryotic
gene expression.

2. Identification of HATs
In 1995, Brownell and Allis developed a histone acetyl-

transferase (HAT) assay and detected a single polypeptide
of 55 kDa (p55) in macronuclear extracts of Tetrahymena
thermophilia (9). Cloning of the cDNA encoding p55
revealed striking sequence similarity of the protein with
a yeast transcriptional coactivator, Gcn5 (10), and this

latter protein was then found to have HAT activity.
The identification of a HAT in the transcriptional
coactivator was a breakthrough in understanding the
causal relationship between histone acetylation and gene
expression.

Another gene encoding a HAT was identified in 1995.
Kleff et al. screened for mutants defective in HAT activity
among a collection of yeast temperature-sensitive mutants
with an enzymatic assay that used fractionated cell
extracts (11), which led to the discovery of the Hat1 pro-
tein. Because the hat1 mutant conferred no obvious
phenotypes other than the enzymatic defect, the identi-
fication of Hat1 did not directly link histone acetylation
and gene expression. However, Hat1 was found to share
structural similarity with Gcn5, and both proteins were
later assigned to the GNAT (GCN5-related N-acetyltrans-
ferases) superfamily (12). Hat1 was the first HAT whose
tertiary structure was solved (13), thus contributing to an
understanding of the relationship between HAT structure
and function.

HAT activities of mammalian proteins were also repor-
ted. In 1996, HAT activity of PCAF (p300/CBP-associated
factor), a protein that competes with the adenoviral onco-
protein E1A to bind to the coactivator p300/CBP, was
reported (14). p300/CBP itself also turned out to be a
HAT (15, 16), as did TAFII250 (CCG1/TAF1), the largest
subunit of the general transcription initiation factor
TFIID, which is conserved among eukaryotes (17). To
date, various types of promoter-associated transcriptional
coactivators and proteins in transcription machineries
have been tested for HAT activity and some of these
were shown to be HATs (Table 1) (18, 19). These findings
strengthened the idea that localized acetylation of histones
by transcription factors contributes to the activation of
promoter-specific gene expression.

Meanwhile, our group identified a novel class of HATs
that regulates long-range/chromosome-wide gene expres-
sion (20). A member of the MYST (MOZ, YBF2/SAS3,
SAS2, Tip60) family of proteins, Tip60, was shown to
possess HAT activity with novel substrate specificity.
The HAT activities of other members of the MYST family,
including Esa1, a yeast counterpart of Tip60, have been
confirmed (Table 1). HAT activities for MYST family pro-
teins were anticipated since they contain sequences
similar to the acetyl-CoA binding motif (21) in an evolutio-
narily conserved region, the MYST domain (20). Interest-
ingly, Esa1 has a sequence motif (the ‘‘ER motif ’’) also
found in a histone deacetylase (HDAC), yeast Rpd3 (22).
Other MYST family members, yeast Sas2 and Sas3,
are involved in long-range gene repression dependent on
chromosomal location (23, 24), and Drosophila MOF is
involved in hyperactivation of the male X chromosome
(25). The identification of MYST proteins as HATs linked
histone acetylation and long-range/chromosome-wide
gene expression.

3. The residue-specificity of histone acetylation: A
two-step classification and the allocation strategy

Many, but not all, lysines in the amino-terminal tail
(N-tail) regions of core histones are acetylated in vivo
(Fig. 2A) (26, 27). The site specificity of identified HATs
is also divergent (18, 28). Analysis of primary sequences

Fig. 1. Chromosomes, chromatin, nucleosomes and histone
modifications. (A) Schematic representation of a chromosome
(upper), chromatin fiber (middle) and nucleosomes (lower). His-
tones are shown as yellow circles, and DNA is shown as a black
line. The nucleosome, the fundamental unit of chromatin, consists
of a histone octamer wrapped with 146 bp of DNA. Post-
translational modifications of histones are shown in small circles:
acetylation (Ac, blue), methylation (Me, green), phosphorylation
(P, orange), ubiquitination (Ub, purple), sumoylation (SUMO,
gray), and poly-ADP-ribosylation (ADP, pink). HATs (histone acet-
yltransferases) transfer acetyl groups to histones, and HDACs (his-
tone deacetylases) remove them. (B) Specific acetylation of histone
lysine residues in vivo. A schematic summary of the results of
Turner et al. (8). K5, K8, K12, and K16 represent histone H4 lysine
residues 5, 8, 12, and 16, respectively. Distinct patterns of acetyla-
tion are found in different chromosomal regions (see text for
details).
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Table 1. A list of identified histone acetyltransferases (HATs).

Group HAT Organism Complex Possible function Ref.

Gcn5 family Gcn5 yeast SAGA, SLIK,
SALSA, ADA, HAT-A2

transcriptional activation (10)

Gcn5L mammal/fly STAGA, TFTC transcriptional activation (95, 96)

PCAF mammal PCAF complex transcriptional activation (14)

MYST familya Tip60 mammal TIP60 complex transcriptional activation/DNA repair (20)

HBO1 mammal HBO1 complex gene expression?/DNA replication? (97)

MORF mammal transcriptional activation (98)

MOZ mammal transcriptional activation (99)

MOF mammal/fly MSL dosage compensation (25, 100–102)

Esa1 yeast NuA4 transcriptional activation (36)

Sas3 yeast NuA3 transcriptional activation? (103)

Sas2 yeast SAS-I anti-silencing (41, 42, 45)

Others Hat1 yeast Hat1/2 complex histone deposition (11)

p300/CBP mammal transcriptional activation (15, 16)

TAFII250 (TAF1) mammal/fly/yeast TFIID RNA pol II transcription (17)

ACTR/SRC-1 mammal transcriptional activation (104, 105)

Elp3 yeast elongator transcriptional elongation (106)

hTFIIIC110 mammal TFIIIC RNA pol III transcription (107)

hTFIIIC90 mammal TFIIIC RNA pol III transcription (108)

Hpa2 yeast ? (109)

Nut1 yeast mediator RNA pol II transcription (110)

ATF-2 mammal transcriptional activation (111)
aenok and Chameau (Chm) are members of the MYST family in fly; their in vitro HAT activity has yet to be confirmed (112, 113).

A B C D E F

I
(G/A)
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(S/T)

III
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Fig. 2. Acetylation sites in histone amino-
terminal tails and the ‘‘two-step classifica-
tion’’ hypothesis. (A) Primary structures of his-
tone tails in human cells. Acetylation sites, shown
in red, were determined through primary struc-
tural analyses of histones in cellular extracts
(26, 27). Acetylation of most of these lysines has
also been detected using specific antibodies (e.g.,
Ref. 40). These sites coincide with those acety-
lated by identified HATs (e.g., Ref. 163). Recently,
acetylation of four additional lysines in the amino-
terminal tail regions of calf thymus histones
has been detected (H2A-K9, H2A-K13, H2A-K15
and H4-K20) (164). Further analysis is required
before concluding that these lysines are acety-
lated in vivo. (B) Two-step classification hypoth-
esis. Lysines acetylated in vivo (shown in red in A)
are subject to a ‘‘two-step classification.’’ Classes I
to III are defined by residues located amino-
terminal to acetylated lysines: glycine or alanine
(G/A) for class I, serine or threonine (S/T) for class
II, and lysine or arginine (K/R) for class III. Each
class is subdivided into two groups according to
additional flanking residues (groups A to F). For
details, see (28). Of the four additional lysines
that may be acetylated in vivo (164), the flanking
sequences of three (H2A-K9, H2A-K13 and H2A-
K15) are similar to those of classified lysines.
H2A-K9 can be considered as a group B residue
(28), and it is acetylated by a HAT in vitro (29);
and H2A-K13 and H2A-K15 can be classified as
group A lysines. Further analyses of the acetyla-
tion status of these lysine residues and compar-
ison of obtained experimental results with the
provisional classification will be of interest.
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in the vicinity of lysines of core histone N-tails revealed
that lysines acetylated in vivo can be classified into three
classes and six groups (Fig. 2B) (28). This classification
distinguishes lysines acetylated in vivo from others, and
fits well with the in vitro site specificity of the catalytic
domains of HATs. Therefore, it has been hypothesized
that the catalytic domains of HATs recognize classes and
groups according to this ‘‘two-step classification’’ hypoth-
esis (28, 29).

The hypothesis provides several insights into how
HATs select specific lysines. First, the flanking sequences
alone are unlikely to determine whether the lysine will
be acetylated by a HAT. Some lysines that are not acety-
lated by HATs in the non-N-tail regions of histones or
other proteins meet the classification criteria. HATs also
acetylate non-histone substrates (Table 2). Some lysines
in these substrates do not fall into any group in the classi-
fication. Because the higher order structure of the N-tail
regions is considered flexible (3), this structure might
be important for the N-tails of histones and non-histone
substrates to be acetylated in addition to the flanking
sequences of the target lysines. Second, the hypothesis
provides a possible explanation for the broad but non-
random specificity of Tip60 or p300 (Fig. 2B). For example,
there is no apparent and strict consensus sequence for
substrate recognition by a class I-specific HAT like Tip60.
Because the ‘class I’ lysines consist solely of ‘group A’ and
‘group B’ lysines, the substrate recognition surfaces of the
class I-specific HATs may consist of a surface that can
recognize both sequences or two distinct surfaces of which
one recognizes the consensus sequence of group A and the
other that of group B. This speculation, based on the pro-
posed classification, can explain specific lysine selection by
HATs without an apparent target consensus sequence.

Most HATs form multisubunit complexes. In 1998, sub-
unit compositions of human PCAF complex and yeast
Gcn5 complexes (SAGA and ADA) were reported (30,
31). To date, subunits of various HAT complexes have
been identified and revealed to play critical roles in regu-
lating HAT activity, for example by targeting activity
to specific chromosomal regions (Table 3) (32). The forma-
tion of multisubunit complexes also modulates the

substrate specificity of HATs. The catalytic domains of
most HATs alone are unable to acetylate the histones in
the nucleosomal context. HAT complexes, however, can
acetylate nucleosomal histones, and specific subunits of
these complexes are required for targeting them to nucleo-
somes. For example, Gcn5 alone is unable to acetylate
nucleosomal histones efficiently, whereas the Gcn5 com-
plexes ADA and SAGA can (33). Ada2 and Ada3, subunits
common to these two complexes, are required for their
association with and acetylation of nucleosomal histones
(34). Similarly, the Epl1 and Yng2 subunits of the Esa1
complex NuA4 are sufficient for Esa1 to acetylate nucleo-
somal histones (35).

The lysine specificity of HATs is also modulated through
multisubunit complex formation. In some cases, the
lysine specificity of HAT complexes toward nucleosomal
histones is more restricted than that of the catalytic
subunit alone toward free histones. This is the case for
HATs in the MYST family. Interestingly, there appears
to be a systematic pattern underlying the in vivo lysine
specificity of MYST family HATs, which we now call ‘‘allo-
cation’’ (Fig. 3A lower). Six lysine residues in histone
N-tails (K5 of H2A, K14 of H3, and K5/8/12/16 of H4)
are potential targets for acetylation by MYST family
HATs (Table 4, Fig. 3A upper) (29, 36). The MYST family
has three members (Esa1, Sas2, and Sas3) in Saccharo-
myces cerevisiae. Esa1 has major effects on H2A-K5 and
H4-K5/8/12 acetylation, both in vivo and in the form of
multisubunit complexes (37–42), whereas Sas3 affects
H3-K14 (43, 44) and Sas2 affects H4-K16 (Table 4 and
Fig. 3A, lower) (41, 42, 45, 46). Based on these observa-
tions, we propose that there is an ‘‘allocation’’ strategy,
such that HATs cover all potential acetylation sites
while narrowing down the specificity of each member
with little overlap (Fig. 3B, lower). Potential acetylation
sites are defined by local structures of catalytic domains
of HATs and histone N-tails, which may follow the ‘‘two-
step classification’’ hypothesis (Fig. 3B, upper). This
strategy does not decrease the number of lysines that
are acetylated by all family members, while narrowing
the specificity of an individual family member. This may
explain why HATs form a family. Since the number of the

Table 2. A list of nonhistone substrates for HATs.a

Function Substrate Enzyme Effect of acetylation Ref.

transcription factor Sp1 p300 enhancement of DNA binding through
interaction with p300, but not acetylation by p300

(114)

KLF5 p300 enhancement of transcription activity (115)

FOXO1 CBP inhibition of transcription activity (116)

MEF2C p300 enhancement of DNA binding, transcription and myogenic differentiation (117)

SRY p300 increase in importin b binding and participate nuclear localization (118)

GATA-4 p300 enhancement of DNA binding, participates in transcription and involved
in differentiation of embryonic stem cells into cardiac myocytes

(119, 120)

HNF-6 CBP increase in stability and stimulate transcription (121)

signaling regulator Stat3 p300 stimulation of DNA binding and transcription (122)
aA comprehensive list can be obtained from Yang (2004) (123). Non-histone substrates that do not appear in the list of Yang (2004), are
listed. The other non-histone substrates include chromosomal proteins, HAT autoacetylations, chromatin remodelers, transcrip-
tional coregulators, general transcription factors, DNA metabolic enzymes, apoptosis regulator, nuclear import receptor, and viral
proteins (123).
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MYST family members is increased in mammals (Table 1),
it is intriguing to examine whether further allocation is
observed and how it relates to complexity of gene regula-
tion in mammals.

The formation of multisubunit complexes is also reported
to broaden the lysine specificity of HATs. For example, the
Gcn5 complexes ADA and SAGA can acetylate histone H2B
in vitro, whereas Gcn5 alone cannot (33). Mechanisms
underlying this gain of lysine specificity are unknown,
although the Ada2 and Ada3 subunits of the complex
are necessary and sufficient for broadening the lysine spe-
cificity of Gcn5 (34). Tertiary structure analyses of these
complexes may provide insight into the underlying
mechanisms.

4. The histone code hypothesis
The residue specificity of identified HATs and HAT com-

plexes was a strong evidence against the original proposal
that the neutralization of the positive charge of lysine resi-
dues and a resultant decrease in electrostatic interactions
between DNA and histones is the major consequence
of histone acetylation. Instead, the idea that residue-
specific modification of histones has unique and specific
effects on chromatin function has become widely accepted
(8). Post-translational modifications of histones, including
acetylation, constitute a code that allows specific interac-
tions or reactions with chromatin-associated components
to take place in a chromosomal context. This idea has
gained currency as the ‘‘histone code hypothesis’’, which
holds that the code is generated by histone-modifying
enzymes of defined specificity and read by nonhistone pro-
teins that bind in a modification-sensitive manner (Table 5
and Fig. 4) (5, 47). The mechanism is likely to be function-
ing in reactions other than transcription which are
regulated by post-translational modification of histones,
such as DNA replication, repair and recombination
(Fig. 4) (48–50).

The histone codes are read by proteins that interact
with histones in modification-dependent manners (Fig. 5A).
One group, bromodomain proteins, is considered to bear
acetylated histone interaction domains (51). To date, the
bromodomains of various proteins have been reported to
interact with acetylated histones in a lysine-specific man-
ner in vitro (Table 6). Bromodomain-dependent binding of
proteins to acetylated chromatin supports the binding
of bromodomains to acetylated histone in vivo (52–56).
These bromodomain-containing proteins are components
of nucleosome-modulating complexes that also include
ATPases and HATs. Acetylation at specific lysines is
thought to stabilize these complexes through bromodomain
interaction and to stimulate nucleosome remodeling,
further acetylation, or the recruitment of TFIID (52, 57).
Initial recruitment of a HAT to chromatin may require
nucleosome remodeling. In vivo observations indicate that
a HAT is recruited to a promoter after a nucleosome remo-
deling ATPase complex (58, 59). HAT is proposed to be
required for the subsequent stable binding of the ATPase
complex in these cases (60). HAT may be recruited to chro-
matin before the ATPase complex and recruit ATPases in
some instances (52, 57, 60).

Sir3 (61, 62) and Tup1 (63) are proposed to interact
with hypoacetylated histones, and both repress gene

S
T

A
F

5
5

S
T

A
F

6
0

S
A

P
1
3
0

S
A

P
1
3
0

R
ef

.h
(3
1
,
3
3
)

(1
2
4
,
1
2
5
)

(3
1
,
3
3
)

(1
2
6
)

(1
2
7
,
1
2
8
)

(1
2
9
)

(3
0
)

(3
7
)

(4
3
)

(4
5
,
4
6
,
1
3
0
,
1
3
1
)

(1
3
2
–
1
3
4
)

(1
0
1
)

(1
3
5
,
1
3
6
)

(1
3
7
,
1
3
8
)

(1
3
9
)

(1
0
7
)

(1
4
0
)

(1
1
0
)

a
‘‘H

A
T

’’
in

d
ic

a
te

s
th

a
t
a

m
on

om
er

of
th

e
ca

ta
ly

ti
c

su
b
u

n
it

w
a
s

ex
a
m

in
ed

a
s

a
n

en
zy

m
e,

w
h

il
e

‘‘H
A

T
co

m
p

le
x
’’

in
d

ic
a
te

s
th

a
t
th

e
co

m
p

le
x

fo
rm

s
w

er
e

u
se

d
.F

or
th

e
su

b
st

ra
te

s,
‘‘f

re
e

h
is

to
n

es
’’

a
n

d
‘‘n

u
cl

eo
so

m
a
l
h

is
to

n
es

’’
in

d
ic

a
te

th
a
t

th
e

co
rr

es
p

on
d

in
g

fo
rm

s
of

h
is

to
n

es
w

er
e

u
se

d
.T

h
e

re
fe

re
n

ce
s

fo
r

th
e

sp
ec

ifi
ci

ty
of

th
e

ca
ta

ly
ti

c
su

b
u

n
it

s
a
lo

n
e

a
g
a
in

st
fr

ee
h

is
to

n
es

a
re

sh
ow

n
in

T
a
b
le

1
.b

S
u

b
u

n
it

s
co

n
se

rv
ed

a
m

on
g

co
m

p
le

x
es

of
th

e
G

cn
5

fa
m

il
y

a
n

d
M

Y
S

T
fa

m
il

y
a
re

re
p

re
se

n
te

d
on

h
or

iz
on

ta
ll

in
es

a
s

in
(3
2
).

U
n

ifi
ed

n
om

en
cl

a
tu

re
fo

r
T

F
II

D
a
n

d
m

ed
ia

to
r

su
b
u

n
it

s
is

u
se

d
(1
4
1
,1

4
2
).

c N
.D

.=
n

ot
d

et
ec

te
d

,N
.A

.=
n

ot
a
n

a
ly

ze
d

.d
A

ca
ta

ly
ti

c
d

om
a
in

of
M

O
F

(a
a
.5

1
8
–
8
2
7
)a

ce
ty

la
te

s
H

2
A

/H
3
/H

4
(1
0
1
),

w
h

er
ea

s
th

e
fu

ll
-l

en
g
th

M
O

F
sh

ow
s

a
st

ro
n

g
p

re
fe

re
n

ce
fo

r
h

is
to

n
e

H
4

(1
0
0
).

A
n

N
-t

er
m

in
a
ld

om
a
in

is
in

v
ol

v
ed

in
th

is
g
a
in

of
sp

ec
ifi

ci
ty

(1
0
0
).

T
h

e
fu

ll
-l

en
g
th

M
O

F
is

a
ls

o
ca

p
a
b
le

of
a
ce

ty
la

ti
n

g
of

n
u

cl
eo

so
m

a
lh

is
to

n
es

w
it

h
a

st
ro

n
g

p
re

fe
re

n
ce

fo
r

ly
si

n
e

1
6

of
h

is
to

n
e

H
4

(1
0
0
).

e
H

A
T

a
ct

iv
it

y
to

w
a
rd

n
u

cl
eo

so
m

a
lh

is
to

n
es

of
a

T
A

F
II

2
5
0
-c

on
ta

in
in

g
co

m
p

le
x

(T
F

II
D
b)

h
a
s

n
ot

b
ee

n
d

et
ec

te
d

(1
2
9
).

S
u

b
u

n
it

co
m

p
os

it
io

n
in

y
ea

st
is

sh
ow

n
.

f R
ec

om
b
in

a
n

t
T

F
II

IC
9
0

a
lo

n
e

p
os

se
ss

es
a

H
A

T
a
ct

iv
it

y
to

w
a
rd

n
u

cl
eo

so
m

a
l
h

is
to

n
es

w
it

h
a

st
ro

n
g

p
re

fe
re

n
ce

fo
r

h
is

to
n

e
H

3
(1
0
8
).

g
S

p
ec

ifi
ci

ty
of

T
F

II
IC

9
0
.S

p
ec

ifi
ci

ty
of

T
F

II
IC

2
2
0

or
T

F
II

IC
1
1
0

a
lo

n
e

to
w

a
rd

fr
ee

h
is

to
n

es
h

a
s

y
et

to
b
e

a
n

a
ly

ze
d

.
h
T

w
o

re
v
ie

w
a
rt

ic
le

s
(1
9
,
3
2
)

w
er

e
co

n
su

lt
ed

to
co

n
st

ru
ct

th
e

ta
b
le

.

652 A. Kimura et al.

J. Biochem.

 at Peking U
niversity on Septem

ber 29, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


expression in S. cerevisiae. Sir3 spreads along chromatin
and contributes to gene repression over a range of several
kilobases (64). Deacetylation of H4-K16 by an HDAC, Sir2
(65), stimulates binding of Sir3 to chromatin and thus gene
silencing, whereas acetylation of this lysine by a MYST-
HAT, Sas2, prevents Sir3 from spreading on chromatin
and contributes to anti-silencing (41, 42) (see next section).
In contrast, Tup1 represses gene expression in a promoter-
specific manner. The local recruitment of Tup1 is accom-
plished by sequence-specific DNA binding proteins such
as a2/Mcm1, Mig1 and Sko1 (66). Tup1 acts in concert
with a histone H2B/H3-specific HDAC, Hda1, to repress
gene expression, possibly by binding to hypoacetylated
histones (67).

Other modifications of histones also regulate their
interaction with proteins, and these alterations also
function as codes (Table 5). For example, methylation
of H3-K9 is known to stimulate the binding of
chromodomain-containing proteins such as HP1
and Swi6 to chromatin, leading to gene repression
(68–70).

Modification of histones also influences other histone
modifications, a phenomenon called cross talk (71)
(Fig. 5B). In cis-tail crosstalk, a given modification affects
modification of neighboring residues by physically stabi-
lizing or inhibiting interaction between enzymes and sub-
strates. For example, phosphorylation of serine 10 of
histone H3 (H3-S10) enhances acetylation of H3-K14

Fig. 3. Lysine specificity of HAT
complexes and the ‘‘allocation’’
hypothesis. (A) Allocation of lysine
specificities among members of the
MYST-HAT family. (Upper) Poten-
tial lysine specificity of the MYST-
HAT domain toward free histones
as substrates, based on experimen-
tal results found for Esa1, Sas3,
and human Tip60 (Table 4). Posi-
tions of lysines are numbered
according to the primary structures
of vertebrate histones as in Fig. 2.
(Lower) Lysine-specific acetylation
of MYST-HAT family members
in vivo (Table 4). The six lysines
potentially acetylated by the
MYST domain are allocated by the
MYST-HAT family members for
acetylation in vivo. H4-K16 may
not be a preferred Esa1 acetylation
site compared to other histone H4
lysines (dotted arrow; Table 4). (B)
Two-step classification hypothesis
and allocation strategy to select
specific lysines by HAT. (Upper)
The potential specificity of each
enzyme is defined by catalytic
domain structures, which corre-
spond to the two-step classification
of lysines (Fig. 2B). (Lower) Lysine
specificity is allocated by family
members, and each member regu-
lates specific lysine(s) in vivo.
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by Gcn5 (72). In trans-tail crosstalk, a given modification
affects modifications on other histone tails. For example,
ubiquitination of H2B-K123 by Rad6/Ubc2 is required for
methylation of H3-K4 and H3-K79 (73, 74). The interde-
pendency of histone modifications led Fischle et al. to pro-
pose that histone modifications function as binary
switches (75).

5. Long-range/chromosome-wide gene expression
regulated by histone acetylation

Most HATs identified to date are involved mainly in
promoter-specific gene expression. Analyses of these
HATs have advanced our understanding of the molecular
mechanisms by which histone acetylation controls gene
expression at specific promoters. In contrast, the

Table 4. Lysine specificity of MYST-HATs in Saccharomyces cerevisiae.a

In vitrob In vivoc

Ref.
MYST vs.

free histone
MYST vs.

nuc. histone
MYSTc vs.
free histone

MYSTc vs.
nuc. histone

Western
blot

Chromatin
IP

Sas2 not detected not detected (41, 42, 45, 46)

H3-K14

H4-K16 H4 H4-K16 H4-K16

Sas3 H2A (c) not detected (43, 44, 103)

H3 H3 H3 H3-K9/14

H4 H4

Esa1 H2Ad-K5(c) not detected H2A (h/y) H2Ad-K5(c) H2A-K7(y) (36–42, 143)

H3-K14 H3 H2B-K16(y)

H4-K5, K8, K12, K16 H4 H4-K5, K8, K12e H4-K5, K8, K12 H4-K5, K8, K12
aExperimental data shown are from the references indicated. Because the primary structures of amino-terminal tails of histones H2A and
H2B vary from species to species (19), the species from which the histones were derived are shown in parentheses for histones H2A
and H2B (i.e., c: chicken, h: human, y: yeast). b‘‘MYST’’ indicates that the monomer of the corresponding member (Sas2, Sas3, or Esa1)
was examined as an enzyme in the in vitro assays, while ‘‘MYSTc’’ indicates that the complex form of the member was used. For the
substrates, ‘‘freehistones’’ and ‘‘nuc.histones’’ indicatethat freehistonesandnucleosomalhistoneswereused intheassay,respectively. cThe
sites whose acetylation is reduced in the strains with mutations in the corresponding member (Sas2, Sas3, or Esa1) are detected either by
‘‘Westernblot’’ or ‘‘Chromatin IP’’ assay. dLysine9 of chicken H2A is weakly acetylated by Esa1 compared to lysine 5 of chicken H2A. Because
the site is not reported to be acetylated in vivo, the lysine 9 is omitted from further discussion (see Refs.28and29). eThe level of acetylation of
H4-K16 by the Esa1 complex is slightly above the background level in vitro (38).

Table 5. Examples of residue-specific histone modifications and induced downstream events.

Histone Residue Modification Organism
Modification

enzyme
Recognition

Chromatin states
(next reaction)

Cellular
events

Ref.

H4 N.D.a acetylation mammal CDY BRDT chromatin
reorganization

spermatogenesis (144, 145)

H3 K4 methylation yeast Set1 Chd1 acetylation of histone
H3 by SLIK complex

response to
transcriptional
stress

(146–148)

K9 methylation yeast Clr4 Swi6 silencing maintenance of
heterochromatin

(69, 70)

K9 methylation mammal Suv39h1 HP1 interfere with
phosphorylation
of H3-S10

maintenance of
heterochromatin

(68, 69, 149)

K9
K27

methylation plant Kryptonite
(for K9)

CMT3 DNA
methylation

flowering (150)

Unknown
(for K27)

K27 methylation fly E(Z) Polycomb
(PC)

silencing homeotic gene
repression

(151–153)

K79 methylation mammal DOT1L 53BP1 change higher-order
chromatin structure

cell cycle (154, 155)

S10b phosphorylation tetrahymena
yeast

Snf1 GCN5 acetylation of K14
of H3 by Gcn5

transcription (72, 156)

H2A S129 phosphorylation yeast Mec1 Arp4 acetylation by NuA4 DNA repair (157, 158)
aLysines acetylated by CDY are yet to be identified. Interaction between acetylated histones and BRDT was examined using a H4
amino-terminal peptide with acetylation at K5, K8, K12 and K16. bSnf1 and GCN5 derive fromS. cerevisiae andTetrahymena, respectively.
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regulation of long-range/chromosome-wide gene expres-
sion by histone acetylation is poorly understood (Fig. 6).
The MYST-type HAT family is a group of HATs involved
mainly in long-range/chromosome-wide gene expression.

Transcriptional silencing/anti-silencing of genes located
near telomeres and the cryptic mating loci of yeast
S. cerevisiae is a model system of long-range gene regula-
tion in eukaryotes (64, 76–78). Deacetylation of H4-K16 by
the Sir2 deacetylase is thought to enhance the binding of
Sir3 to chromatin and to cause gene silencing at these
regions. However, it was not clear whether deacetylation
of this lysine residue was the primary determinant for Sir3
localization and gene silencing in vivo because the HAT
acetylating this lysine in vivo was unknown. A MYST
protein, Sas2, has been identified as the HAT that acety-
lates H4-K16 at telomere-distal regions (41, 42). The role
of H4-K16 acetylation was evaluated by manipulating the
acetylation level in vivo. Mutation of Sas2 and Sir2 caused
the boundary between the hyper- and hypo-acetylated
regions to advance and recede from its original position.
Importantly, the position of this boundary coincided with
that of Sir3 localization and of overall transcriptional

activity. These results indicate that H4-K16 plays a
decisive role in establishing transcriptionally active and
inactive regions (Fig. 7A).

More importantly, these results inspired a novel
view of chromosomal border establishment (79). A pre-
vailing view of chromosome borders, which we term the
‘‘fixed border’’ model, is that they are ‘walls’ that actively
inhibit the function of transcriptional enhancers or silen-
cers between distinct regions on chromosomes (Fig. 7B;
reviewed in Ref. 80). Positions of the borders will be defined
by specific DNA elements and fixed in chromosomes
(Fig. 7C). Analysis of Sas2, however, implied another
mechanism that does not require ‘walls’ at chromosomal
borders. Instead, it provided evidence for a mechanism (the
‘‘negotiable border’’ model) that defines a border through
the balance of opposing enzymatic activities (Fig. 7B) (79).
Positions of the borders depend on the strength of each
activity and are thus movable (Fig. 7C).

Deacetylation of H4-K16 by Sir2 at the telomere-
proximal regions stabilizes binding of Sir3 and Sir4 on the
chromosome and inactivates gene expression (76). In con-
trast, acetylation of H4-K16 by Sas2 at the telomere-distal

Fig. 4. The histone code hypo-
thesis. Schematic of the histone
code hypothesis. Histones are labeled
with ‘‘codes’’ by histone modification
enzymes (‘‘marking of histone’’ in the
figure). These post-translational
modifications are recognized by pro-
teins that interact with histones
in modification-dependent manners
(‘‘reading of the code’’). Recruitment
of these histone-interacting proteins
triggers subsequent reactions on chro-
matin (‘‘chromatin states’’), which
cause various changes (‘‘cellular
events’’).

Fig. 5. Reading histone codes. (A)
Depending on specific patterns estab-
lished by various histone-modification
enzymes, distinct proteins are
recruited to chromatin, with specific
results (e.g. transcriptional activa-
tion/inactivation). (B) Schematic of
‘‘chromatin crosstalk.’’ The efficiency
of modification at particular residues
depends on pre-existing histone mod-
ification patterns. Such interdepen-
dency might involve residues in the
same histone-tail (‘cis tail’ regulation)
or those in different histone tails
(‘trans tail’ regulation). Abbreviations:
HAT, histone acetyltransferase; HMT,
histone methyltransferase.
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regions stabilizes binding of a bromodomain containing
protein Bdf1 on the chromosome (53). Bdf1 is a component
of a chromatin remodeling SWR1 complex, which
exchanges conventional histone H2A with a histone
variant H2A.Z (Htz1) in nucleosomes (81–83). This
recruitment of H2A.Z on chromatin antagonizes telomeric
silencing (84). Methylation of H3-K4 by Set1 and H3-K79
by Dot1 at telomere-distal regions may also play a role in
anti-silencing by preventing Sir proteins to associate with
chromatin of these regions (85–87). Ubiquitination of H2B-
K123 by Rad6/Ubc2 should regulate methylation of these
lysines (73, 74).

To establish a negotiable border, histone (or DNA) mod-
ification enzymes should be recruited to specific regions
on chromosomes. A straightforward scenario for enzyme
recruitment is to assume specific DNA elements that
interact directly or indirectly with these enzymes. We pre-
viously predicted that boundary DNA elements (or insula-
tors) originally assumed to define fixed borders may
establish negotiable borders instead (79). Consistent
with this prediction, a boundary DNA element in verte-
brates recruits HATs to prevent the spread of silenced
chromatin (88), and DNA elements that recruit histone
modification enzymes function as boundary DNA elements

in yeast (89). A temporal analysis of silent chromatin
assembly in mammalian cells detected the bidirectional
spread of histone and DNA modifications nucleated at a
specific chromosome region (90). Other explanations of
the recruitment of histone/DNA modification enzymes
involve repetitive DNA elements and noncoding RNAs
(91). Such mechanisms are important in dosage compensa-
tion in mammals and Drosophila and in gene silencing
mediated by RNA interference (RNAi) (92). Establish-
ment of eukaryotic chromosomal boundaries to regulate
long-range/chromosome-wide gene expression involves
many mechanisms (93, 94). How these mechanisms act
in concert to regulate long-range/chromosome-wide tran-
scriptional activity is one of the major challenges in the
field of eukaryotic gene expression.

6. Perspectives
Here, we have reviewed major advances in histone acet-

ylation research with emphases on lysine specificity in the
acetylation reaction and on the regulation of long-range/
chromosome-wide gene expression. Post-translational
modification of histones also plays critical roles in other
reactions involving chromatin, such as DNA replication,
repair and recombination (48–50). Research in the past

Fig. 6. Long-range/chromosome-wide gene expression.
(A) Examples of long-range gene regulation in yeast. At telomere-
proximal regions (upper) and cryptic mating type loci (middle),
Sir2 deacetylates H4-K16 and enhances the assembly of Sir2/
Sir3/Sir4 proteins on chromatin in these regions. Sir1 is required
for silencing at the mating type loci. The Sir proteins are recruited to
the chromosomal regions through DNA-binding proteins that bind
to telomere repeat or silencer elements. The RENT (Sir2, Net1,
Cdc14) complex regulates silencing at the rDNA locus (lower).
(B) Examples of long-range/chromosome-wide gene regulation in

higher eukaryotes. At the HOX gene cluster (upper) and on the
mammalian X chromosome (middle), H3-K27 is methylated by
the EED-EZH2 complex (151, 165). At the HOX gene cluster, methy-
lation enhances the binding of Polycomb (PC) in the PRC1 complex,
which leads to silencing of the region. (Lower) Insulators at the
b-globin locus are hyperacetylated, and H3-K9 in condensed chro-
matin region is methylated (80). A silencing protein, HP1, binds to
histones methylated at H3-K9 by a histone methyltransferase,
Suv39h.
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ten years has greatly advanced our knowledge not only of
histone acetylation but also of acetylation of non-histone
proteins, histone modification in general and epigenetic
regulation in eukaryotes. Considering its highly packed
structure and dynamic modulation throughout the cell
cycle, and the tight control over efficient and specific
gene expression, the eukaryotic chromosome is still full
of mystery. Understanding the post-translational modi-
fications of histones is a key for unlocking its secrets.
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Table 6. Summary of bromodomains with known acetyl-
histone-binding ability.

Protein Organism Acetyl-histone-
binding

Detection Ref.

Gcn5 human K5 acetylated-H2A NMR (159)

K8 acetylated-H4

K16 acetylated-H4

yeast K16 acetylated-H4 NMR (160)

PCAF human acetylated-H3 NMR (51)

acetylated-H4

TAFII250 human K16 acetylated-H4 NMR (161)

K8/K16 acetylated-H4

K5/K12 acetylated-H4

K5/K8/K12/K16
acetylated-H4

K14 acetylated-H3 Western blot (56)

K8 acetylated-H4

K12 acetylated-H4

K16 acetylated-H4

Brd2 mouse K5 acetylated-H2B Western blot (56)

K12 acetylated-H2B

K8 acetylated-H4

K12 acetylated-H4

K16 acetylated-H4

Brd4 mouse K14 acetylated-H3 Western blot (55)

K9/K14 acetylated-H3

K5/K12 acetylated-H4

K5/K8/K12/K16
acetylated-H4

BRDT mouse acetylated-H4 Western blot (145)

Bdf1 yeast acetylated-H3
acetylated-H4

Coomassie
brilliant blue
staining

(53, 54)

Rsc4 yeast K14 acetylated-H3 Western blot (162)
Fig. 7.Negotiable andfixedborders. (A) Chromosomal gradient
of histone acetylation near telomeres. Regions near the telomere
end are hypoacetylated at H4-K16 through the function of Sir2,
whereas telomere-distal regions are hyperacetylated through the
function of Sas2. The hypoacetylated regions are enriched in Sir3
and gene expression is silenced. For details, see Ref. 41. (B) (Left)
Establishment of fixed borders. An ‘‘insulator’’ DNA element is
shown as a green box, and components recruited to this element
are indicated as green circles. These factors function as a barrier,
an enhancer blocker or both. (Right) Establishment of negotiable
borders. The localization of each of a pair of modification enzymes
can be defined by specific DNA elements on chromosomes. These
enzymes are recruited by proteins bound to the DNA elements and
can modify surrounding chromosomal regions. The border of the
modified state is established somewhere between the two DNA
elements. Distinct chromosome states are established according
to specific modification states. Fixed borders (left) are tethered
to an ‘‘insulator’’, whereas negotiable borders (right) can shift
according to the position of a ‘‘chromosomal gradient’’ based on
the balance of two chromatin modification activities. For details,
see (79). (C) Non-biological examples of a fixed border (left: Great
Wall of China) and a negotiable border (right: American Civil War).
The Great Wall of China was built by the first emperor of China as a
first line of defense against the invading tribes north of China. The
position of this border has been fixed for over 2,000 years.
The American Civil War was fought in the United States in the
1860s between the northern states of the Union and the southern
states of the Confederacy. The territories of each army changed
during the war, but finally the Union prevailed and unified the
states.
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